A Fixed Points Approach to stability of the Pexider Equation

Belaid Bouikhalene ${ }^{1}$, Elhoucien Elqorachi ${ }^{2}$, John Michael Rassias ${ }^{3}$
${ }^{1}$ Polydisciplinary Faculty, Sultan Moulay Slimane university, Beni Mellal, Morocco.
${ }^{2}$ Department of Mathematics, Faculty of Sciences, Ibn Zohr University, Agadir, Morocco.
3 The National and Capodistrian University of Athens Section of Mathematics, Informatics Pedagogical Department E.E. Agamemnonos Str., Aghia Paraskevi, Attikis 15342, Athens, GREECE
E-mail: bbouikhalene@yahoo.fr, elqorachi@hotmail.com, Ioannis.Rassias@primedu.uoa.gr

Abstract

Using the fixed point theorem we establish the Hyers-Ulam-Rassias stability of the generalized Pexider functional equation $$
\frac{1}{|K|} \sum_{k \in K} f(x+k \cdot y)=g(x)+h(y), x, y \in E
$$ from a normed space E into a complete β-normed space F, where K is a finite abelian subgroup of the automorphism group of the group $(E,+)$.

2010 Mathematics Subject Classification. 39B82. 39B52.
Keywords. Stability of functional equation, fixed point, Pexider equation.

1 Introduction and Preliminaries

Under what condition does there exist a group homomorphism near an approximate group homomorphism? This question concerning the stability of group homomorphisms was posed by S. M. Ulam [58]. In 1941, the Ulam's problem for the case of approximately additive mappings was solved by D. H. Hyers [21] on Banach spaces. In 1950 T. Aoki [2] provided a generalization of the Hyers' theorem for additive mappings and in 1978 Th. M. Rassias 47 generalized the Hyers' theorem for linear mappings by considering an unbounded Cauchy difference. The result of Rassias' theorem has been generalized by J.M. Rassias 44 and later by Gǎvruta 18 who permitted the Cauchy difference to be bounded by a general control function. Since then, the stability problems for several functional equations have been extensively investigated (cf. [16], [19, [23], 24], [25], [26], [27, [32], [41, 44, 45], 48, 49]).
Let E be a real vector space and F be a real Banach space. Let K be a finite abelian subgroup of $\operatorname{Aut}(E)$ (the automorphism group of the group $(E,+),|K|$ denotes the order of K. Writing the action of $k \in K$ on $x \in E$ as $k \cdot x$, we will say that $(f, g, h): E \rightarrow F$ is a solution of the generalized

Pexider functional equation, if

$$
\begin{equation*}
\frac{1}{|K|} \sum_{k \in K} f(x+k \cdot y)=g(x)+h(y), \quad x, y \in E \tag{1.1}
\end{equation*}
$$

The generalized quadratic functional equation

$$
\begin{equation*}
\frac{1}{|K|} \sum_{k \in K} f(x+k \cdot y)=f(x)+f(y), \quad x, y \in E \tag{1.2}
\end{equation*}
$$

and the generalized Jensen functional equation

$$
\begin{equation*}
\frac{1}{|K|} \sum_{k \in K} f(x+k \cdot y)=f(x), \quad x, y \in E \tag{1.3}
\end{equation*}
$$

are particulars cases of equation 1.1.
The functional equations (1.1), (1.2) and (1.3) appeared in several works by H. Stetkær, see for example [55], 56] and [57]. We refer also to the recent studies by L. Radosław [50] and 51].
If we set $K=\{I, \sigma\}$, were $I: E \longrightarrow E$ denotes the identity function and σ denote an additive function of E, such that $\sigma(\sigma(x))=x$, for all $x \in E$ then equation 1.1) reduces to the Pexider functionals equations

$$
\begin{gather*}
f(x+y)+f(x+\sigma(y))=g(x)+h(y), x, y \in E, \tag{1.4}\\
f(x+y)=g(x)+h(y), x, y \in E, \quad(\sigma=I) \tag{1.5}\\
f(x+y)+f(x-y)=g(x)+h(y), x, y \in E, \quad(\sigma=-I) \tag{1.6}
\end{gather*}
$$

Y. H. Lee and K. W. Jung 33 obtained the Hyers-Ulam-Rassias of the Pexider functional equation (1.5). Jung [27] and Jung and Sahoo [30] investigated the Hyers-Ulam-Rassias stability of equation (1.6). Belaid et al. have proved the Hyers-Ulam stability of equation (1.1) and the Hyers-UlamRassias stability of the functional equations (1.2), 1.3), (see [1, [11, [12] and [34]).
Recently, Radosław [50] obtained the Hyers-Ulam-Rassias stability of equation 1.1). In 2003 L . Cădariu and V. Radu [9] notice that a fixed point alternative method is very important for the solution of the Hyers-Ulam stability problem. Subsequently, this method was applied to investigate the Hyers-Ulam-Rassias stability for Jensen functional equation, as well as for the additive Cauchy functional equation [12] by considering a general control function $\varphi(x, y)$, with suitable properties, using such an elegant idea, several authors applied the method to investigate the stability of some functional equations, see for example [3, [4, [5] [6, 31, [35], 43].
In this paper, we will apply the fixed point method as in 9 to prove the Hyers-Ulam-Rassias stability of the functional equations (1.1), for a large classe of functions from a vector space E into complete β-normed space F.

Now, we recall one of fundamental results of fixed point theory.
Let X be a set. A function $d: X \times X \rightarrow[0,+\infty]$ is called a generalized metric on X if d satisfies the following:
(1) $d(x, y)=0$ if and only if $x=y$;
(2) $d(x, y)=d(y, x)$ for all $x, y \in X$;
(2) $d(x, z) \leq d(x, y)+d(y, z)$ for all $x, y, z \in X$.

Theorem 1.1. [15] Suppose we are given a complete generalized metric space (X, d) and a strictly contractive mapping $J: X \rightarrow X$, white the Lipshitz constant $L<1$. If there exists a nonnegative integer k such that $d\left(J^{k} x, J^{k+1} x\right)<+\infty$ for some $x \in X$, then the following are true:
(1) the sequence $J^{n} x$ converges to a fixed point x^{*} of J;
(2) x^{*} is the unique fixed point of J in the set $Y=\left\{y \in X: d\left(J^{k} x, y\right)<+\infty\right\}$;
(3) $d\left(y, x^{*}\right) \leq \frac{1}{1-L} d(y, J y)$ for all $y \in Y$.

Throughout this paper, we fix a real number β with $0<\beta \leq 1$ and let \mathbb{K} denote either \mathbb{R} or \mathbb{C}. Suppose E is a vector space over \mathbb{K}. A function $\|\cdot\|_{\beta}: E \longrightarrow[0, \infty)$ is called a β-norm if and only if it satisfies
(1) $\|x\|_{\beta}=0$, if and only if $x=0$;
(2) $\|\lambda x\|_{\beta}=|\lambda|^{\beta}\|x\|_{\beta}$ for all $\lambda \in \mathbb{K}$ and all $x \in E$;
(3) $\|x+y\|_{\beta} \leq\|x\|_{\beta}+\|y\|_{\beta}$ for all $x, y \in E$.

2 main results

In the following theorem, by using an idea of Cǎdariu and Radu [9, 12, we prove the Hyers-UlamRassias stability of the generalized Pexider functional equation 1.1.
Theorem 2.1. Let E be a vector space over \mathbb{K} and let F be a complete β-normed space over \mathbb{K}. Let K be a finite abelian subgroup of the automorphism group of $(E,+)$. Let $f: E \longrightarrow F$ be a mapping for which there exists a function $\varphi: E \times F \rightarrow[0, \infty)$ and a constant $L<1$, such that

$$
\begin{equation*}
\left\|\frac{1}{|K|} \sum_{k \in K} f(x+k \cdot y)-g(x)-h(y)\right\|_{\beta} \leq \varphi(x, y) \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{k \in K} \varphi(x+k \cdot x, y+k \cdot y) \leq(|2 K|)^{\beta} L \varphi(x, y) \tag{2.2}
\end{equation*}
$$

for all $x, y \in E$. Then, there exists a unique solution $q: E \longrightarrow F$ of the generalierd quadratic functional equation 1.2 and a unique solution $j: E \longrightarrow F$ of the generalized Jensen functional equation (1.3) such that

$$
\begin{gather*}
\frac{1}{|K|} \sum_{k \in K} j(k \cdot x)=0 \tag{2.3}\\
\|f(x)-q(x)-j(x)-g(0)-h(0)\|_{\beta} \leq \frac{2}{2^{\beta}} \frac{1}{1-L} \chi(x, x)+\frac{1}{2^{\beta}} \frac{1}{1-L} \psi(x, x), \tag{2.4}\\
\|g(x)-q(x)-j(x)-g(0)\|_{\beta} \leq \varphi(x, 0)+\frac{2}{2^{\beta}} \frac{1}{1-L} \chi(x, x)+\frac{1}{2^{\beta}} \frac{1}{1-L} \psi(x, x) \tag{2.5}
\end{gather*}
$$

and

$$
\begin{equation*}
\|h(x)-q(x)-h(0)\|_{\beta} \leq \frac{1}{2^{\beta}} \frac{1}{1-L} \psi(x, x)+\varphi(0, x) \tag{2.6}
\end{equation*}
$$

for all $x \in E$, where

$$
\chi(x, y)=\frac{|K|}{|K|^{\beta}} \varphi(0, y)+\varphi(x, y)+\varphi(x, 0)+\varphi(0, y)
$$

$$
+\frac{1}{|K|^{\beta}} \sum_{k \in K}[\varphi(k \cdot x, y)+\varphi(k \cdot x, 0)]
$$

and

$$
\psi(x, y)=\frac{|K|}{|K|^{\beta}} \varphi(0, y)+\frac{1}{|K|^{\beta}} \sum_{k \in K}[\varphi(k \cdot x, y)+\varphi(k \cdot x, 0)] .
$$

Proof. Letting $y=0$ in (2.1), to obtain

$$
\begin{equation*}
\|f(x)-g(x)-h(0)\|_{\beta} \leq \varphi(x, 0) \tag{2.7}
\end{equation*}
$$

for all $x \in E$. By using (2.7), (2.1) and the triangle inequality, we get

$$
\begin{align*}
\| \frac{1}{|K|} \sum_{k \in K} f(x+k \cdot y)- & f(x)-(h(y)-h(0))\left\|_{\beta} \leq\right\| \frac{1}{|K|} \sum_{k \in K} f(x+k \cdot y)-g(x)-h(y) \|_{\beta} \tag{2.8}\\
+ & \|g(x)-f(x)+h(0)\|_{\beta} \leq \varphi(x, y)+\varphi(x, 0)
\end{align*}
$$

for all $x, y \in E$. Replacing x by 0 in (2.1, we get

$$
\begin{equation*}
\left\|\frac{1}{|K|} \sum_{k \in K} f(k \cdot y)-g(0)-h(y)\right\|_{\beta} \leq \varphi(0, y) \tag{2.9}
\end{equation*}
$$

for all $y \in E$. So inequalities $2.8,2.9$ and the triangle inequality implies that

$$
\begin{gather*}
\left\|\frac{1}{|K|} \sum_{k \in K} f(x+k \cdot y)-f(x)-\frac{1}{|K|} \sum_{k \in K} f(k \cdot y)+g(0)+h(0)\right\|_{\beta} \leq \frac{1}{|K|} \sum_{k \in K} f(x+k \cdot y)-f(x)-(h(y)-h(0)) \|_{\beta} \\
+\left\|\frac{1}{|K|} \sum_{k \in K} f(k \cdot y)-h(y)-g(0)\right\|_{\beta} \leq \varphi(x, y)+\varphi(x, 0)+\varphi(0, y) \tag{2.10}
\end{gather*}
$$

for all $x, y \in E$. Now, let

$$
\begin{equation*}
\varphi(x)=\frac{1}{|K|} \sum_{k \in K} f(k \cdot x) \tag{2.11}
\end{equation*}
$$

for all $x \in E$. Then, φ satisfies

$$
\begin{equation*}
\frac{1}{|K|} \sum_{k \in K} \varphi(k \cdot x)=\varphi(x) \tag{2.12}
\end{equation*}
$$

for all $x \in E$. Furthermore, in view of $2.10,2.12$ and the triangle inequality, we have

$$
\begin{gather*}
\left\|\frac{1}{|K|} \sum_{k^{\prime} \in K} \varphi\left(x+k^{\prime} \cdot y\right)-\varphi(x)-\varphi(y)+g(0)+h(0)\right\|_{\beta} \tag{2.13}\\
=\left\|\frac{1}{|K|} \sum_{k^{\prime} \in K} \frac{1}{|K|} \sum_{k \in K} f\left(k \cdot x+k k^{\prime} \cdot y\right)-\frac{1}{|K|} \sum_{k \in K} f(k \cdot x)-\frac{1}{|K|^{2}} \sum_{k, k^{\prime} \in K} f\left(k k^{\prime} \cdot y\right)+g(0)+h(0)\right\|_{\beta} \\
\leq \frac{1}{|K|^{\beta}} \sum_{k \in K}\left\|\frac{1}{|K|} \sum_{k^{\prime} \in K} f\left(k \cdot x+k^{\prime} \cdot y\right)-f(k \cdot x)-\frac{1}{|K|} \sum_{k^{\prime} \in K} f\left(k^{\prime} \cdot y\right)+g(0)+h(0)\right\|_{\beta}
\end{gather*}
$$

$$
\leq \frac{1}{|K|^{\beta}} \sum_{k \in K}[\varphi(k \cdot x, y)+\varphi(k \cdot x, 0)]+\frac{|K|}{|K|^{\beta}} \varphi(0, y)=\psi(x, y)
$$

Since K is an abelian subgroup, so by using 2.2 , we get

$$
\begin{equation*}
\sum_{k \in K} \psi(x+k \cdot x, y+k \cdot y) \leq(2|K|)^{\beta} L \psi(x, y) \tag{2.14}
\end{equation*}
$$

for all $x, y \in E$. Let us consider the set $X:=\{g: E \longrightarrow F\}$ and introduce the generalized metric on X as follows:

$$
\begin{equation*}
d(g, h)=\inf \left\{C \in[0, \infty]:\|g(x)-h(x)\|_{\beta} \leq C \psi(x, x), \forall x \in E\right\} \tag{2.15}
\end{equation*}
$$

Let f_{n} be a Cauchy sequence in (X, d). According to the definition of the Cauchy sequence, for any given $\varepsilon>0$, there exists a positive integer N such that

$$
\begin{equation*}
d\left(f_{n}, f_{m}\right) \leq \varepsilon \tag{2.16}
\end{equation*}
$$

for all integer m, n such that $m \geq N$ and $n \geq N$. That is, by considering the definition of the generalized metric d

$$
\begin{equation*}
\left\|f_{m}(x)-f_{n}(x)\right\|_{\beta} \leq \varepsilon \psi(x, x) \tag{2.17}
\end{equation*}
$$

for all integer m, n such that $m \geq N$ and $n \geq N$, which implies that $f_{n}(x)$ is a Cauchy sequence in F, for any fixed $x \in E$. Since F is complete, $f_{n}(x)$ converges in F for each x in E. Hence, we can define a function $f: E \longrightarrow F$ by

$$
\begin{equation*}
f(x)=\lim _{n \longrightarrow \infty} f_{n}(x) \tag{2.18}
\end{equation*}
$$

As a similar proof to [34], we consider the linear operator $J: X \rightarrow X$ such that

$$
\begin{equation*}
(J h)(x)=\frac{1}{2|K|} \sum_{k \in K} h(x+k \cdot x) \tag{2.19}
\end{equation*}
$$

for all $x \in E$. By induction, we can easily show that

$$
\begin{equation*}
\left(J^{n} h\right)(x)=\frac{1}{(2|K|)^{n}} \sum_{k_{1}, \ldots, k_{n} \in K} h\left(x+\sum_{i_{j}<i_{j+1}, k_{i j} \in\left\{k_{1}, \ldots, k_{n}\right\}}\left(k_{i_{1}} \ldots k_{i_{p}}\right) \cdot x\right) \tag{2.20}
\end{equation*}
$$

for all integer n.
First, we assert that J is strictly contractive on X. Given g and h in X, let $C \in[0, \infty)$ be an arbitrary constant with $d(g, h) \leq C$, that is,

$$
\begin{equation*}
\|g(x)-h(x)\|_{\beta} \leq C \psi(x, x) \tag{2.21}
\end{equation*}
$$

for all $x \in E$. So, it follows from (2.19), (2.14) and (2.21) we get

$$
\begin{aligned}
\|(J g)(x)-(J h)(x)\|_{\beta} & =\left\|\frac{1}{2|K|} \sum_{k \in K} g(x+k \cdot x)-\frac{1}{2|K|} \sum_{k \in K} h(x+k \cdot x)\right\|_{\beta} \\
& =\frac{1}{(2|K|)^{\beta}}\left\|\sum_{k \in K} g(x+k \cdot x)-h(x+k \cdot x)\right\|_{\beta} \\
& \left.\leq \frac{1}{(2|K|)^{\beta}} \sum_{k \in K} \| g(x+k \cdot x)-h(x+k \cdot x)\right) \|_{\beta} \\
& \leq \frac{1}{(2|K|)^{\beta}} C \sum_{k \in K} \psi(x+k \cdot x, x+k \cdot x) \\
& \leq C L \psi(x, x)
\end{aligned}
$$

for all $x \in E$, that is, $d(J g, J h) \leq L C$. Hence, we conclude that

$$
d(J g, J h) \leq L d(g, h)
$$

for any $g, h \in X$. Now, we claim that

$$
\begin{equation*}
d(J(\varphi-g(0)-h(0), \varphi-g(0)-h(0))<\infty . \tag{2.22}
\end{equation*}
$$

By letting $y=x$ in 2.13), we obtain

$$
\begin{equation*}
\|(J(\varphi-g(0)-h(0)))(x)-(\varphi-g(0)-h(0))(x)\|_{\beta}=\frac{1}{2^{\beta}}\left\|\frac{1}{|K|} \sum_{k \in K} \varphi(x+k \cdot x)-2 \varphi(x)+g(0)+h(0)\right\|_{\beta} \leq \frac{1}{2^{\beta}} \psi(x, x) \tag{2.23}
\end{equation*}
$$

for all $x \in E$, that is

$$
\begin{equation*}
d(J(\varphi-g(0)-h(0)), \varphi-g(0)-h(0)) \leq \frac{1}{2^{\beta}}<\infty \tag{2.24}
\end{equation*}
$$

From Theorem 1.1, there exists a fixed point of J which is a function $q: E \rightarrow F$ such that $\lim _{n \rightarrow \infty} d\left(J^{n}(\varphi-g(0)-h(0)), q\right)=0$. Since $d\left(J^{n}(\varphi-g(0)-h(0)), q\right) \rightarrow 0$ as $n \rightarrow \infty$, there exists a sequence $\left\{C_{n}\right\}$ such that $\lim _{n} \longrightarrow \infty C_{n}=0$ and $d\left(J^{n} \varphi-g(0)-h(0), q\right) \leq C_{n}$ for every $n \in \mathbb{N}$. Hence, from the definition of d, we get

$$
\begin{equation*}
\|\left(J ^ { n } \left(\varphi-g(0)-h(0)(x)-q(x) \|_{\beta} \leq C_{n} \psi(x, x)\right.\right. \tag{2.25}
\end{equation*}
$$

for all $x \in E$. Therefore,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \|\left(J^{n}(\varphi-g(0)-h(0))(x)-q(x) \|_{\beta}=0\right. \tag{2.26}
\end{equation*}
$$

for all $x \in E$.
Now, if we put $\kappa(x)=\varphi(x)-g(0)-h(0)$, by using induction on n we prove the validity of following inequality

$$
\begin{equation*}
\left\|\frac{1}{|K|} \sum_{k \in K} J^{n} \kappa(x+k \cdot y)-J^{n} \kappa(x)-J^{n} \kappa(y)\right\|_{\beta} \leq L^{n} \psi(x, y) . \tag{2.27}
\end{equation*}
$$

In view of the commutativity of K the inequalities (2.13), (2.14) we have

$$
\begin{gathered}
\left\|\frac{1}{|K|} \sum_{k \in K} J f(x+k \cdot y)-J \kappa(x)-J \kappa(y)\right\|_{\beta} \\
=\left\|\frac{1}{|K|} \sum_{k \in K} \frac{1}{2|K|} \sum_{k_{1} \in K} \kappa\left(x+k \cdot y+k_{1} \cdot x+k_{1} k \cdot y\right)-\frac{1}{2|K|} \sum_{k_{1} \in K} \kappa\left(x+k_{1} \cdot x\right)-\frac{1}{2|K|} \sum_{k_{1} \in K} \kappa\left(y+k_{1} \cdot y\right)\right\|_{\beta} \\
\leq \frac{1}{\left(2|K|^{\beta}\right)} \sum_{k_{1} \in K}\left\|\frac{1}{|K|} \sum_{k \in K} \kappa\left(x+k_{1} \cdot x+k \cdot\left(y+k_{1} \cdot y\right)\right)-\kappa\left(x+k_{1} \cdot x\right)-\kappa\left(y+k_{1} \cdot y\right)\right\|_{\beta} \\
\leq \frac{1}{\left(2|K|^{\beta}\right)} \sum_{k_{1} \in K} \psi\left(x+k_{1} \cdot x, y+k_{1} \cdot y\right) \leq \frac{1}{(2|K|)^{\beta}}(2|K|)^{\beta} L \psi(x, y)=L \psi(x, y) .
\end{gathered}
$$

This proves 2.27 for $n=1$. Now, we assume that 2.27 is true for n. By using the commutativity of K, the inequalities $2.13,2.14$, we get

$$
\begin{gathered}
\left\|\frac{1}{|K|} \sum_{k \in K} J^{n+1} \kappa(x+k \cdot y)-J^{n+1} \kappa(x)-J^{n+1} \kappa(y)+g(0)+h(0)\right\|_{\beta} \\
=\| \frac{1}{|K|} \sum_{k \in K} \frac{1}{2|K|} \sum_{k^{\prime} \in K} J^{n} \kappa\left(x+k \cdot y+k^{\prime} \cdot x+k^{\prime} k \cdot y\right) \\
-\frac{1}{2|K|} \sum_{k^{\prime} \in K} J^{n} \kappa\left(x+k^{\prime} \cdot x\right)-\frac{1}{2|K|} \sum_{k^{\prime} \in K} J^{n} \kappa\left(y+k^{\prime} \cdot y\right) \|_{\beta} \\
\leq \frac{1}{(2|K|)^{\beta}} \sum_{k^{\prime} \in K} \| \frac{1}{|K|} \sum_{k \in K} J^{n} \kappa\left(x+k^{\prime} \cdot x+k \cdot\left(y+k^{\prime} \cdot y\right)-J^{n} \kappa\left(x+k^{\prime} \cdot x\right)-J^{n} \kappa\left(y+k^{\prime} \cdot y\right) \|_{\beta}\right. \\
\leq \frac{1}{(2|K|)^{\beta}} \sum_{k^{\prime} \in K} L^{n} \psi\left(x+k^{\prime} \cdot x, y+k^{\prime} \cdot y\right) \leq L^{n+1} \psi(x, y)
\end{gathered}
$$

which proves (2.27) for $n+1$. Now, by letting $n \rightarrow \infty$, in (2.27), we obtain that q is a solution of equation (1.2). According to the fixed point theorem (Theorem 1.1, (3)) and inequality (2.24), we get

$$
\begin{equation*}
d(\varphi-g(0)-h(0), q) \leq \frac{1}{1-L} d(J(\varphi-g(0)-h(0)), \varphi-g(0)-h(0)) \leq \frac{1}{2^{\beta}(1-L)} \tag{2.28}
\end{equation*}
$$

and so we have

$$
\begin{equation*}
\| \varphi(x)-q(x)-g(0)-h(0)) \| \leq \frac{1}{2^{\beta}(1-L)} \psi(x, x) \tag{2.29}
\end{equation*}
$$

for all $x \in E$. On the other hand if we put

$$
\begin{equation*}
\omega(x)=f(x)-\varphi(x)=f(x)-\frac{1}{|K|} \sum_{k \in K} f(k \cdot x) \tag{2.30}
\end{equation*}
$$

for all $x \in E$, it follows from inequalities $2.10,2.23$ and the triangle inequality that

$$
\begin{gather*}
\left\|\frac{1}{|K|} \sum_{k^{\prime} \in K} \omega\left(x+k^{\prime} \cdot y\right)-\omega(x)\right\|_{\beta} \tag{2.31}\\
=\left\|\frac{1}{|K|} \sum_{k^{\prime} \in K} f\left(x+k^{\prime} \cdot y\right)-\frac{1}{|K|} \sum_{k \in K} \varphi(x+k \cdot y)-f(x)+\varphi(x)\right\|_{\beta} \\
\leq\left\|-\frac{1}{|K|} \sum_{k \in K} \varphi(x+k \cdot y)+\varphi(x)+\varphi(y)-g(0)-h(0)\right\|_{\beta} \\
+\left\|\frac{1}{|K|} \sum_{k^{\prime} \in K} f\left(x+k^{\prime} \cdot y\right)-f(x)-\frac{1}{|K|} \sum_{k^{\prime} \in K} f\left(k^{\prime} \cdot y\right)+g(0)+h(0)\right\|_{\beta} \\
\leq \frac{1}{|K|^{\beta}} \sum_{k \in K}[\varphi(k \cdot x, y)+\varphi(k \cdot x, 0)]+\frac{|K|}{|K|^{\beta}} \varphi(0, y)+\varphi(x, y)+\varphi(x, 0)+\varphi(0, y)=\chi(x, y)
\end{gather*}
$$

for all $x, y \in E$. By using the same definition for X as in the above proof, the generalized metric on X

$$
\begin{equation*}
d(g, h)=\inf \left\{C \in[0, \infty]:\|g(x)-h(x)\|_{\beta} \leq C \chi(x, x), \forall x \in E\right\} . \tag{2.32}
\end{equation*}
$$

and some ideas of [34, we will prove that there exists a unique solution j of equation (1.3) such that

$$
\begin{equation*}
\|\omega(x)-j(x)\|_{\beta} \leq \frac{1}{1-L} \chi(x, x) \tag{2.33}
\end{equation*}
$$

for all $x \in E$.
First, from 2.2 we can easily verify that $\chi(x, y)$ satisfies

$$
\begin{equation*}
\sum_{k \in K} \chi(x+k \cdot x, y+k \cdot y) \leq(2|K|)^{\beta} L \chi(x, y) \tag{2.34}
\end{equation*}
$$

Let us consider the function $T: X \rightarrow X$ defined by

$$
\begin{equation*}
(T h)(x)=\frac{1}{|2 K|} \sum_{k \in K} h(x+k \cdot x) \tag{2.35}
\end{equation*}
$$

for all $x \in E$. Given $g, h \in X$ and $C \in[0, \infty]$ such that $d(g, h) \leq C$, so we get

$$
\begin{gathered}
\|(T g)(x)-(T h)(x)\|_{\beta}=\left\|\frac{1}{|2 K|} \sum_{k \in K} g(x+k \cdot x)-\frac{1}{|2 K|} \sum_{k \in K} h(x+k \cdot x)\right\|_{\beta} \\
=\frac{1}{|2 K|^{\beta}}\left\|\sum_{k \in K}[g(x+k \cdot x)-h(x+k \cdot x)]\right\|_{\beta} \\
\leq \frac{1}{|2 K|^{\beta}} \sum_{k \in K}\|g(x+k \cdot x)-h(x+k \cdot x)\|_{\beta} \leq C L \chi(x, x)
\end{gathered}
$$

for all $x \in E$. Hence, we see that $d(T g, T h) \leq L d(g, h)$ for all $g, h \in X$. So T is a strictly contractive operator.
Putting $y=x$ in 2.31, we have

$$
\begin{equation*}
\left\|\frac{1}{|2 K|} \sum_{k \in K} \omega(x+k \cdot x)-\frac{1}{2} \omega(x)\right\|_{\beta} \leq \frac{1}{2^{\beta}} \chi(x, x) \tag{2.36}
\end{equation*}
$$

for all $x \in E$, so by the triangle inequality, we get

$$
\begin{equation*}
d(T \omega, \omega) \leq \frac{2}{2^{\beta}} \tag{2.37}
\end{equation*}
$$

From the fixed point theorem (Theorem 1.1), it follows that there exits a fixed point j of T in X such that

$$
\begin{equation*}
j(x)=\lim _{n \rightarrow \infty} \frac{1}{|2 K|^{n}} \sum_{k_{1}, \ldots, k_{n} \in K} \omega\left(x+\sum_{i_{j}<i_{j+1}, k_{i j} \in\left\{k_{1}, \ldots, k_{n}\right\}}\left[\left(k_{i_{1}}\right) \cdots\left(k_{i_{p}}\right)\right] \cdot x\right) \tag{2.38}
\end{equation*}
$$

for all $x \in E$ and

$$
\begin{equation*}
d(\omega, j) \leq \frac{1}{1-L} d(T \omega, \omega) \tag{2.39}
\end{equation*}
$$

So, it follows from 2.37) and 2.39 that

$$
\begin{equation*}
\|\omega(x)-j(x)\|_{\beta} \leq \frac{2}{2^{\beta}} \frac{1}{1-L} \chi(x, x) \tag{2.40}
\end{equation*}
$$

for all $x \in E$.
By the same reasoning as in the above proof, one can show by induction that

$$
\begin{equation*}
\left\|\frac{1}{|K|} \sum_{k \in K} T^{n} \omega(x+k \cdot y)-T^{n} \omega(x)\right\|_{\beta} \leq L^{n} \chi(x, y) \tag{2.41}
\end{equation*}
$$

for all $x, y \in E$ and for all $n \in \mathbb{N}$. Letting $n \rightarrow \infty$ in (2.41), we get that j is a solution of the generalized Jensen functional equation (1.3).
From 2.11, 2.29 2.30, 2.40 and the triangle inequality, we obtain

$$
\begin{array}{r}
\|f(x)-q(x)-j(x)-g(0)-h(0)\|_{\beta} \leq \frac{2}{2^{\beta}} \frac{1}{1-L} \chi(x, x)+\frac{1}{2^{\beta}} \frac{1}{1-L} \psi(x, x), \\
\|g(x)-q(x)-j(x)-g(0)\|_{\beta} \leq \varphi(x, 0)+\frac{2}{2^{\beta}} \frac{1}{1-L} \chi(x, x)+\frac{1}{2^{\beta}} \frac{1}{1-L} \psi(x, x) \tag{2.43}
\end{array}
$$

and

$$
\begin{equation*}
\|h(x)-q(x)-h(0)\|_{\beta} \leq \frac{1}{2^{\beta}} \frac{1}{1-L} \psi(x, x)+\varphi(0, x) \tag{2.44}
\end{equation*}
$$

for all $x \in E$.
Finally, in the following we will verify that the solution j satisfies the condition

$$
\begin{equation*}
\frac{1}{|K|} \sum_{k \in K} j(k \cdot x)=0 \tag{2.45}
\end{equation*}
$$

for all $x \in E$ and we will prove the uniqueness of the solutions q and j which satisfy the inequalities (2.42) 2.43) and (2.44).

Due to definition of ω, we get $\frac{1}{|K|} \sum_{k \in K} \omega(k \cdot x)=0$ for all $x \in E$, so we get $\frac{1}{|K|} \sum_{k \in K} T \omega(k \cdot x)=0$, $\frac{1}{|K|} \sum_{k \in K} T^{2} \omega(k \cdot x)=0, \ldots, \frac{1}{|K|} \sum_{k \in K} T^{n} \omega(k \cdot x)=0$. So, by letting $n \longrightarrow \infty$, we obtain the ralation 2.45.
Now, according to 2.44 and 2.2 we get by induction that

$$
\begin{equation*}
\left\|J^{n}(h-h(0))(x)-q(x)\right\|_{\beta} \leq L^{n}\left[\frac{1}{2^{\beta}} \frac{1}{1-L} \psi(x, x)+\varphi(0, x)\right] \tag{2.46}
\end{equation*}
$$

for all $x \in E$ and for all $n \in \mathbb{N}$. So, by letting $n \longrightarrow \infty$, we get

$$
\begin{equation*}
\lim _{n \longrightarrow \infty} J^{n}(h-h(0))(x)=q(x) \tag{2.47}
\end{equation*}
$$

for all $x \in E$, which proves uniqueness of q.
In a similar way, by induction we obtain

$$
\begin{equation*}
\left\|\Lambda^{n}(f-q-h(0)-g(0))(x)-j(x)\right\|_{\beta} \leq L^{n}\left[\frac{1}{1-L} \chi(x, x)+\frac{1}{2^{\beta}} \frac{1}{1-L} \psi(x, x)\right] \tag{2.48}
\end{equation*}
$$

for all $x \in E$ and for all $n \in \mathbb{N}$, where

$$
\Lambda l(x)=\frac{1}{|K|} \sum_{k \in K} l(x+k \cdot x)
$$

Consequently, we have

$$
\begin{equation*}
\lim _{n \longrightarrow \infty} \Lambda^{n}(f-q-h(0)-g(0))(x)=j(x) \tag{2.49}
\end{equation*}
$$

for all $x \in E$. This proves the uniqueness of the function j and this completes the proof of theorem.
In the following, we will investigate some special cases of Theorem 2.1, with the new weaker conditions.

> Q.E.D.

Corollary 2.2. Let E be a vector space over \mathbb{K}. Let K be a finite abelian subgroup of the automorphism group of $(E,+)$, Let $\alpha=\frac{\log (|K|)}{\log (2)}$. Fix a nonnegative real number β such that $\frac{\alpha}{\alpha+1}<\beta<1$ and choose a number p with $0<p<\beta+(\beta-1) \alpha$ and let F be a complete β-normed space over \mathbb{K}. If a function $f: E \longrightarrow F$ satisfies

$$
\begin{equation*}
\left\|\frac{1}{|K|} \sum_{k \in K} f(x+k \cdot y)-g(x)-h(y)\right\|_{\beta} \leq \theta\left(\|x\|^{p}+\|y\|^{p}\right) \tag{2.50}
\end{equation*}
$$

and $\|x+k \cdot x\| \leq 2\|x\|$, for all $k \in K$, for all $x, y \in E$ and for some $\theta>0$, then there exists a unique solution $q: E \longrightarrow F$ of the generalierd quadratic functional equation 1.2 and a unique solution j : $E \longrightarrow F$ of the generalized Jensen functional equation (1.3) such that

$$
\begin{equation*}
\frac{1}{|K|} \sum_{k \in K} j(k \cdot x)=0 \tag{2.51}
\end{equation*}
$$

$$
\begin{align*}
& \|f(x)-q(x)-j(x)-g(0)-h(0)\|_{\beta} \leq \frac{\theta}{2^{\beta}} \frac{(2|K|)^{\beta}}{(2|K|)^{\beta}-2^{p}|K|}\|x\|^{p}\left[\frac{|K|}{|K|^{\beta}}\left(4+4.3^{p}\right)+2+2.3^{p}\right] \tag{2.52}\\
& \|g(x)-q(x)-j(x)-g(0)\|_{\beta} \leq \frac{\theta}{2^{\beta}} \frac{(2|K|)^{\beta}}{(2|K|)^{\beta}-2^{p}|K|}\|x\|^{p}\left[\frac{|K|}{|K|^{\beta}}\left(4+43^{p}\right)+2+2.3^{p}\right]+\theta\|x\|^{p} \tag{2.53}
\end{align*}
$$

and

$$
\begin{equation*}
\|h(x)-q(x)-h(0)\|_{\beta} \leq \frac{\theta}{2^{\beta}} \frac{(2|K|)^{\beta}}{(2|K|)^{\beta}-2^{p}|K|}\|x\|^{p}\left[\frac{|K|}{|K|^{\beta}}\left(2+2.3^{p}\right)\right]+\theta\|x\|^{p} \tag{2.54}
\end{equation*}
$$

for all $x \in E$.
Corollary 2.3. Let E be a vector space over \mathbb{K}. Fix a nonnegative real number β less than 1 and choose a number p with $0<p<1$ and let F be a complete β-normed space over \mathbb{K}. If a function $(f, g, h): E \longrightarrow F$ satisfies

$$
\begin{equation*}
\|f(x+y)-g(x)-h(y)\|_{\beta} \leq \theta\left(\|x\|^{p}+\|y\|^{p}\right) \tag{2.55}
\end{equation*}
$$

for all $x, y \in E$ and for some $\theta>0$, then there exists an unique additive function $a: E \longrightarrow F$ such that

$$
\begin{align*}
& \|f(x)-a(x)-g(0)-h(0)\|_{\beta} \leq \frac{\theta}{2^{\beta}} \frac{2^{\beta}}{2^{\beta}-2^{p}}\|x\|^{p}\left[6+6.3^{p}\right] \tag{2.56}\\
& \|g(x)-a(x)-g(0)\|_{\beta} \leq \frac{\theta}{2^{\beta}} \frac{2^{\beta}}{2^{\beta}-2^{p}}\|x\|^{p}\left[6+6.3^{p}\right]+\theta\|x\|^{p} \tag{2.57}
\end{align*}
$$

and

$$
\begin{equation*}
\|h(x)-a(x)-h(0)\|_{\beta} \leq \frac{\theta}{2^{\beta}} \frac{2^{\beta}}{2^{\beta}-2^{p}}\|x\|^{p}\left[2+2.3^{p}\right]+\theta\|x\|^{p} \tag{2.58}
\end{equation*}
$$

for all $x \in E$.
Corollary 2.4. Let E be a vector space over \mathbb{K}. Let $K=\{I, \sigma\}$ where σ is an volution of E $(\sigma(x+y)=\sigma(x)+\sigma(y)$ and $\sigma(\sigma(x))=x$ for all $x, y \in E)$. Fix a nonnegative real number β such that $\frac{1}{2}<\beta<1$ and choose a number p with $0<p<2 \beta-1$ and let F be a complete β-normed space over \mathbb{K}. If a function $(f, g, h): E \longrightarrow F$ satisfies

$$
\begin{equation*}
\|f(x+y)+f(x+\sigma(y))-g(x)-h(y)\|_{\beta} \leq \theta\left(\|x\|^{p}+\|y\|^{p}\right) \tag{2.59}
\end{equation*}
$$

and $\|x+\sigma(x)\| \leq 2\|x\|$, for all $x, y \in E$ and for some $\theta>0$, then there exists a unique solution q : $E \longrightarrow F$ of the generalierd quadratic functional equation

$$
\begin{equation*}
f(x+y)+f(x+\sigma(y))=2 f(x)+2 f(y), \quad x, y \in E \tag{2.60}
\end{equation*}
$$

and a unique solution $j: E \longrightarrow F$ of the generalized Jensen functional equation

$$
\begin{equation*}
f(x+y)+f(x+\sigma(y))=2 f(x), \quad x, y \in E \tag{2.61}
\end{equation*}
$$

such that

$$
\begin{align*}
& j(\sigma(x))=-j(x), \tag{2.62}\\
& \|f(x)-q(x)-j(x)-g(0)-h(0)\|_{\beta} \leq \frac{\theta}{2^{\beta}} \frac{4^{\beta}}{4^{\beta}-2.2^{p}}\|x\|^{p}\left[\frac{2}{2^{\beta}}\left(4+4.3^{p}\right)+2+2.3^{p}\right] \tag{2.63}
\end{align*}
$$

$$
\begin{equation*}
\|g(x)-q(x)-j(x)-g(0)\|_{\beta} \leq \frac{\theta}{2^{\beta}} \frac{4^{\beta}}{4^{\beta}-2^{p} .2}\|x\|^{p}\left[\frac{2}{2^{\beta}}\left(4+43^{p}\right)+2+2.3^{p}\right]+\theta\|x\|^{p} \tag{2.64}
\end{equation*}
$$

and

$$
\begin{equation*}
\|h(x)-q(x)-h(0)\|_{\beta} \leq \frac{\theta}{2^{\beta}} \frac{4^{\beta}}{4^{\beta}-2^{p} .2}\|x\|^{p}\left[\frac{2}{2^{\beta}}\left(2+2.3^{p}\right)\right]+\theta\|x\|^{p} \tag{2.65}
\end{equation*}
$$

for all $x \in E$.
Corollary 2.5. Let E be a vector space over \mathbb{K} and let F be a complete β-normed space over \mathbb{K}. Let $f: E \longrightarrow F$ be a mapping for which there exists a function $\varphi: E \times F \rightarrow[0, \infty)$ and a constant $L<1$, such that

$$
\begin{equation*}
\|f(x+y)+f(x+\sigma(y))-g(x)-h(y)\|_{\beta} \leq \varphi(x, y) \tag{2.66}
\end{equation*}
$$

and

$$
\begin{equation*}
\varphi(2 x, 2 y)+\varphi(x+\sigma(x), y+\sigma(y)) \leq 4^{\beta} L \varphi(x, y) \tag{2.67}
\end{equation*}
$$

for all $x, y \in E$. Then, there exists a unique solution $q: E \longrightarrow F$ of the generalierd quadratic functional equation 2.62 and a unique solution $j: E \longrightarrow F$ of the generalized Jensen functional equation (2.63) such that

$$
\begin{align*}
& j(\sigma(x))=-j(x) \tag{2.68}\\
&\|f(x)-q(x)-j(x)-g(0)-h(0)\|_{\beta} \leq \frac{2}{2^{\beta}} \frac{1}{1-L} \chi(x, x)+\frac{1}{2^{\beta}} \frac{1}{1-L} \psi(x, x), \tag{2.69}\\
&\|g(x)-q(x)-j(x)-g(0)\|_{\beta} \leq \varphi(x, 0)+\frac{2}{2^{\beta}} \frac{1}{1-L} \chi(x, x)+\frac{1}{2^{\beta}} \frac{1}{1-L} \psi(x, x) \tag{2.70}
\end{align*}
$$

and

$$
\begin{equation*}
\|h(x)-q(x)-h(0)\|_{\beta} \leq \frac{1}{2^{\beta}} \frac{1}{1-L} \psi(x, x)+\varphi(0, x) \tag{2.71}
\end{equation*}
$$

for all $x \in E$, where

$$
\begin{aligned}
& \chi(x, y)=\frac{2}{2^{\beta}} \varphi(0, y)+\varphi(x, y)+\varphi(x, 0)+\varphi(0, y) \\
& +\frac{1}{2^{\beta}}[\varphi(x, y)+\varphi(\sigma(x), y)+\varphi(x, 0)+\varphi(\sigma(x), 0)]
\end{aligned}
$$

and

$$
\psi(x, y)=\frac{2}{2^{\beta}} \varphi(0, y)+\frac{1}{2^{\beta}}[\varphi(x, y)+\varphi(\sigma(x), y)+\varphi(x, 0)+\varphi(\sigma(x), 0)] .
$$

Corollary 2.6. Let E be a vector space over \mathbb{K} and let F be a complete β-normed space over \mathbb{K}. Let $f: E \longrightarrow F$ be a mapping for which there exists a function $\varphi: E \times F \rightarrow[0, \infty)$ and a constant $L<1$, such that

$$
\begin{equation*}
\|f(x+y)-g(x)-h(y)\|_{\beta} \leq \varphi(x, y) \tag{2.72}
\end{equation*}
$$

and

$$
\begin{equation*}
\varphi(2 x, 2 y) \leq 2^{\beta} L \varphi(x, y) \tag{2.73}
\end{equation*}
$$

for all $x, y \in E$. Then, there exists an unique additive function $a: E \longrightarrow F$ such that

$$
\begin{equation*}
\|f(x)-a(x)-g(0)-h(0)\|_{\beta} \leq \frac{2}{2^{\beta}} \frac{1}{1-L} \chi(x, x)+\frac{1}{2^{\beta}} \frac{1}{1-L} \psi(x, x), \tag{2.74}
\end{equation*}
$$

$$
\begin{equation*}
\|g(x)-a(x)-g(0)\|_{\beta} \leq \varphi(x, 0)+\frac{2}{2^{\beta}} \frac{1}{1-L} \chi(x, x)+\frac{1}{2^{\beta}} \frac{1}{1-L} \psi(x, x) \tag{2.75}
\end{equation*}
$$

and

$$
\begin{equation*}
\|h(x)-a(x)-h(0)\|_{\beta} \leq \frac{1}{2^{\beta}} \frac{1}{1-L} \psi(x, x)+\varphi(0, x) \tag{2.76}
\end{equation*}
$$

for all $x \in E$, where

$$
\chi(x, y)=\varphi(0, y)+\varphi(x, y)+\varphi(x, 0)+\varphi(0, y)+[\varphi(x, y)+\varphi(x, 0)]
$$

and

$$
\psi(x, y)=\varphi(0, y)+[\varphi(x, y)+\varphi(x, 0)] .
$$

References

[1] M. Ait Sibaha, B. Bouikhalene and E. Elqorachi, Hyers-Ulam-Rassias stability of the $K-$ quadratic functional equation. J. Inequal. Pure and Appl. Math. 8 (2007), Article 89.
[2] T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan, 2 (1950), 64-66.
[3] M. Akkouchi, Hyers-Ulam-Rassias Stability of nonlinear Volterra integral equations via a fixed point approach, Acta Universitatis Apulensis, 26, (2011), 257-266.
[4] M. Akkouchi, Stability of certain functional equations via a fixed point of ĆIRIĆ, Filomat 25:2, (2011), 121-127.
[5] M.Akkouchi, A. Bounabat and M.H. Lalaoui Rhali, Fixed point approach to the stability of integral equation in the sense of Ulam-Hyers-Rassias, Annales Mathematicae Silesianae 25 (2011), 27-44
[6] M. Akkouchi and A. Ed-Darraz, On th stability of a generalized quadratic functional equation, Acta Universitatis Apulensis, 34, (2013), 379-392.
[7] B. Bouikhalene, E. Elqorachi and Th. M. Rassias, On the Hyers-Ulam stability of approximately Pexider mappings. Math. Inequal. Appl., 11 (2008), 805-818.
[8] J. Brzdȩk, On a method of proving the Hyers-Ulam stability of functional equations on restricted domains, Austr. J. of Math. Anal. Appl., 6 (1), Article 4 (2009), 1-10.
[9] L. Cǎdariu and V. Radu, Fixed points and the stability of Jensens functional equation, Journal of Inequalities in Pure and Applied Mathematics, vol. 4, no. 1, (2003), article 4.
[10] L. Cǎdariu and V. Radu, On the stability of the Cauchy functional equation: a fixed point approach, Grazer Math. Berichte, vol. 346 (2004), 43-52.
[11] A. Charifi, B. Bouikhalene and E. Elqorachi, Hyers-Ulam-Rassias stability of a generalized Pexider functional equation, Banach J. Math. Anal., 1 (2007), 176-185.
[12] A. Charifi, B. Bouikhalene, E. Elqorachi and A. Redouani, Hyers-Ulam-Rassias Stability of a generalized Jensen functional equation, Australian J. Math. Anal. Appli. 19 (2009), 1-16.
[13] Y. J. C. M. E. Gordji and S. Zolfaghari, Solutions and Stability of Generalized Mixed Type QC Functional Equations in Random Normed Spaces, Volume 2010, Article ID 403101, 16 pages.
[14] H.G. Dales and M.S. Moslehian, Stability of mappings on multi-normed spaces, Glasgow Math. J. 49 (2007), 321-332.
[15] J. B. Diaz and B. Margolis, A fixed point theorem of the alternative, for contractions on a generalized complete metric space, Bulletin of the American Mathematical Society, vol. 74 (1968), 305-309.
[16] G. L. Forti, Hyers-Ulam stability of functional equations in several variables, Aequationes Math., 50 (1995), 143-190.
[17] G.-L. Forti and J. Sikorska, Variations on the Drygas equation and its stability, Nonlinear Anal.: Theory, Meth. Appl., 74 (2011), 343-350.
[18] P. Gǎvruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings. J. Math. Anal. Appl., 184 (1994), 431-436.
[19] Z. Gajda, On stability of additive mappings, Internat. J. Math. Math. Sci., 14 (1991), 431-434.
[20] M. E. Gordji, J. M. Rassias, M. B. Savadkouhi, Approximation of the Quadratic and Cubic Functional Equations in RN-spaces, EUROPEAN J. PURE, APPL. MATH., 2 (2009), 494507.
[21] D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U. S. A., 27 (1941), 222-224.
[22] D. H. Hyers, G. Isac and Th. M. Rassias, On the asymptoticity aspect of Hyers-Ulam stability of mappings, Proc. Amer. Math. Soc., 126 (1998), 425-430.
[23] D. H. Hyers, G. I. Isac and Th. M. Rassias, Stability of Functional Equations in Several Variables, Birkhäuser, Basel, 1998.
[24] D. H. Hyers and Th. M. Rassias, Approximate homomorphisms, Aequationes Math., 44 (1992), 125-153.
[25] K.-W. Jun and Y.-H. Lee, A generalization of the Hyers-Ulam-Rassias stability of Jensen's equation, J. Math. Anal. Appl., 238 (1999), 305-315.
[26] S.-M. Jung, Hyers-Ulam-Rassias Stability of Functional Equations in Nonlinear Analysis, Springer, New York, 2011.
[27] S.-M. Jung, Stability of the quadratic equation of Pexider type, Abh. Math. Sem. Univ. Hamburg, 70 (2000), 175-190.
[28] S.-M. Jung, M.S. Moslehian and P K. Sahoo, Stability of generalized Jensen equation on restricted domains, J. Math Inequal., 4 (2010),191-206.
[29] S.-M. Jung and B. Kim, Local stability of the additive functional equation and its applications, IJMMS, (2003), 15-26.
[30] S.-M. Jung and P. K. Sahoo, Hyers-Ulam stability of the quadratic equation of Pexider type, J. Korean Math. Soc., 38 (3) (2001), 645-656.
[31] S.-M. Jung and Zoon-Hee Lee, A Fixed Point Approach to the Stability of Quadratic Functional Equation with Involution, Fixed Point Theory and Applications, V (2008), Article ID 732086, 11 pages.
[32] Pl. Kannappan, Functional Equations and Inequalities with Applications, Springer, New York, 2009.
[33] Y. H. Lee and K. W. Jung, A generalization of the Hyers-Ulam-Rassias stability of the pexider equation, J. Math. Anal. Appl., 246 (2000), 627-638.
[34] Y. Manar, E. Elqorachi and B. Bouikhalene, Fixed point and Hyers-Ulam-Rassias stability of the quadratic and Jensen functional equations Nonlinear Funct. Anal. Appl., 15 (2) (2010), 273-284.
[35] M.S. Moslehian and A. Najati, Application of a fixed point theorem to a functional inequality, Fixed Point Theory 10 (2009), 141-149.
[36] M.S. Moslehian, The Jensen functional equation in non-Archimedean normed spaces, J. Funct. Spaces Appl., 7 (2009), 13-24.
[37] M.S. Moslehian and Gh. Sadeghi, Stability of linear mappings in quasi-Banach modules, Math. Inequal. Appl., 11 (2008), 549-557.
[38] A. Najati and M. B. Moghimi, Stability of a functional equation deriving from quadratic and additive functions in quasi-Banach spaces, J. Math. Anal. Appl., 337 (2008), 399-415.
[39] A. Najati, On the stability of a quartic functional equation, J. Math. Anal. Appl., $\mathbf{3 4 0}$ (2008), 569-574.
[40] A. Najati and C. Park, , Hyers-Ulam-Rassias stability of homomorphisms in quasi-Banach algebras associated to the Pexiderized Cauchy functional equation, J. Math. Anal. Appl.,
[41] C. Park, On the stability of the linear mapping in Banach modules, J. Math. Anal. Appl., 275 (2002), 711-720.
[42] C. Park, HyersUlamRassias stability of homomorphisms in quasi-Banach algebras, Bulletin Sci. Math., 132 2008, 87-96.
[43] M. M. Pourpasha, J. M. Rassias, R. Saadati and S. M. Vaezpour, A fixed point approach to the stability of Pexider quadratic functional equation with involution, J. Ineq. Appl. V 2010 (2010) Article ID 839639, doi:10.1155/2010/839639.
[44] J.M. Rassias, On approximation of approximately linear mappings by linear mappings, J. Funct. Anal., 46 (1982), 126-130.
[45] J. M. Rassias, Solution of a problem of Ulam, J. Approx. Theory., 57 (1989), 268-273.
[46] J. M. Rassias, On the Ulam stability of mixed type mappings on restricted domains, J. Math. Anal. Appl., 276 (2) (2002), 747-762.
[47] Th. M. Rassias, On the stability of linear mapping in Banach spaces, Proc. Amer. Math. Soc., 72 (1978), 297-300.
[48] Th. M. Rassias, The problem of S. M. Ulam for approximately multiplicative mappings, J. Math. Anal. Appl., 246 (2000), 352-378.
[49] Th. M. Rassias and J. Brzdȩk, Functional Equations in Mathematical Analysis, Springer, New York, 2011.
[50] Radosław 1 . The solution and the stability of the Pexiderized K-quardratic functional equation, 12th Debrecen-Katowice Winter Seminar on Functional Equationsand Inequalities, Hajdúszoboszló, Hungary, January 25-28, 2012.
[51] Radosław 1 . Some generalization of Cauchys and the quadratic functional equations, Aequationes Math., 83 (2012), 75-86.
[52] J. Schwaiger, The functional equation of homogeneity and its stability properties, Österreich. Akad. Wiss. Math.-Natur, Kl, Sitzungsber. Abt. II (1996), 205, 3-12.
[53] F. Skof, Approssimazione di funzioni δ-quadratic su dominio restretto, Atti. Accad. Sci. Torino Cl. Sci. Fis. Mat. Natur., 118 (1984), 58-70.
[54] F. Skof, Sull'approssimazione delle applicazioni localmente δ-additive, Atti. Accad. Sci. Torino Cl. Sci. Fis. Mat. Natur. 117 (1983), 377-389.
[55] H. Stetkær, Functional equations on abelian groups with involution. Aequationes Math. 54 (1997), 144-172.
[56] H. Stetkær, Operator-valued spherical functions, J. Funct. Anal., 224, (2005), 338-351.
[57] H. Stetkær, Functional equations and matrix-valued spherical functions. Aequationes Math. 69 (2005), 271-292.
[58] S. M. Ulam, A Collection of Mathematical Problems, Interscience Publ. New York, 1961. Problems in Modern Mathematics, Wiley, New York 1964.
[59] D. Yang, Remarks on the stability of Drygas equation and the Pexider-quadratic equation, Aequationes Math., 68 (2004), 108-116.

